Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
2.
Phenomics ; 4(1): 34-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38605910

RESUMO

Recently, immunotherapy has emerged as a promising and effective method for treating triple-negative breast cancer (TNBC). However, challenges still persist. Immunogenic cell death (ICD) is considered a prospective treatment and potential combinational treatment strategy as it induces an anti-tumor immune response by presenting the antigenic epitopes of dead cells. Nevertheless, the ICD process in TNBC and its impact on disease progression and the response to immunotherapy are not well understood. In this study, we observed dysregulation of the ICD process and verified the altered expression of prognostic ICD genes in TNBC through quantitative real-time polymerase chain reaction (qRT-PCR) analysis. To investigate the potential role of the ICD process in TNBC progression, we determined the ICD-dependent subtypes, and two were identified. Analysis of their distinct tumor immune microenvironment (TIME) and cancer hallmark features revealed that Cluster 1 and 2 corresponded to the immune "cold" and "hot" phenotypes, respectively. In addition, we constructed the prognostic signature ICD score of TNBC patients and demonstrated its clinical independence and generalizability. The ICD score could also serve as a potential biomarker for immune checkpoint blockade and may aid in the identification of targeted effective agents for individualized clinical strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00133-x.

3.
Nat Prod Res ; : 1-5, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613231

RESUMO

Camelina sativa (L.) Crantz is an oilseed plant common in Europe and Asia. This study used the gas chromatography-mass spectrometry (GC-MS) to examine the differences in the aroma on the basis of extraction method such as water distillation extraction (CSPW), Solid-phase microextraction (CSPM) and subcritical extraction (CSPS). Antibacterial test was evaluated by the microdilution method against Salmonella typhimurium, Streptococcus pneumoniae, Escherichia coli, Strepococcus pyogenens, Staphylococcus aureus, and antioxidant activity was determined through DPPH free radical, hydroxyl free radical, and superoxide anion radical scavenging capacity activity. The result revealed that three extraction methods were distinct from each other based on their volatile compounds. Sixty-one volatiles of diverse chemical nature were identified and quantified. The volatile components contain thioether, aldehydes, alcohols, ketones, acids, esters, alkene, alkanes, amide, and furan compounds. The volatile components of Camelina sativa (L.) Crantz have good antibacterial and antioxidant activities. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in plants and products.

4.
J Genet Genomics ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570112

RESUMO

The hindbrain, which develops from the anterior end of the neural tube expansion, can differentiate into the metencephalon and myelencephalon, with varying sizes and functions. The midbrain-hindbrain boundary (MHB) and hindbrain myelencephalon/ventral midline (HMVM) are known to be the source of the progenitors for the anterior hindbrain and myelencephalon, respectively. However, the molecular networks regulating hindbrain morphogenesis in these structures remain unclear. In this study, we show that rb1 is highly expressed at the MHB and HMVM in zebrafish. Knocking out rb1 in mice and zebrafish results in an enlarged hindbrain due to hindbrain neuronal hyperproliferation. Further study reveals that Rb1 controls the hindbrain morphogenesis by suppressing the expression of Gbx1/Gbx2, essential transcription factors for hindbrain development, through its binding to E2f3/Hdac1, respectively. Interestingly, we find that Gbx1 and Gbx2 were expressed in different types of hindbrain neurons, suggesting distinct roles in hindbrain morphogenesis. In summary, our study clarifies the specific role of RB1 in hindbrain neural cell proliferation and morphogenesis by regulating the E2f3-Gbx1 axis and the Hdac1-Gbx2 axis. These findings provide a research paradigm for exploring the differential proliferation of neurons in various brain regions.

5.
PeerJ ; 12: e17166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563004

RESUMO

Objectives: To test the hypothesis that 'live high-base train high-interval train low' (HiHiLo) altitude training, compared to 'live low-train high' (LoHi), yields greater benefits on performance and physiological adaptations. Methods: Sixteen young male middle-distance runners (age, 17.0 ± 1.5 y; body mass, 58.8 ± 4.9 kg; body height, 176.3 ± 4.3 cm; training years, 3-5 y; training distance per week, 30-60 km.wk-1) with a peak oxygen uptake averaging ~65 ml.min-1.kg-1 trained in a normobaric hypoxia chamber (simulated altitude of ~2,500 m, monitored by heart rate ~170 bpm; thrice weekly) for 3 weeks. During this period, the HiHiLo group (n = 8) stayed in normobaric hypoxia (at ~2,800 m; 10 h.day-1), while the LoHi group (n = 8) resided near sea level. Before and immediately after the intervention, peak oxygen uptake and exercise-induced arterial hypoxemia responses (incremental cycle test) as well as running performance and time-domain heart rate variability (5-km time trial) were assessed. Hematological variables were monitored at baseline and on days 1, 7, 14 and 21 during the intervention. Results: Peak oxygen uptake and running performance did not differ before and after the intervention in either group (all P > 0.05). Exercise-induced arterial hypoxemia responses, measured both at submaximal (240 W) and maximal loads during the incremental test, and log-transformed root mean square of successive R-R intervals during the 4-min post-run recovery period, did not change (all P > 0.05). Hematocrit, mean reticulocyte absolute count and reticulocyte percentage increased above baseline levels on day 21 of the intervention (all P < 0.001), irrespective of group. Conclusions: Well-trained runners undertaking base training at moderate simulated altitude for 3 weeks, with or without hypoxic residence, showed no performance improvement, also with unchanged time-domain heart rate variability and exercise-induced arterial hypoxemia responses.


Assuntos
Altitude , Tolerância ao Exercício , Masculino , Humanos , Adolescente , Consumo de Oxigênio/fisiologia , Hipóxia , Adaptação Fisiológica , Oxigênio
6.
Front Genet ; 15: 1328327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601073

RESUMO

Background: Recently, observational studies have reported that gastroesophageal reflux disease (GERD) is commonly associated with irritable bowel syndrome (IBS), but the causal relationship is unclear. Methods: We conducted a two-sample Mendelian randomization study using summary data from genome-wide association studies (GWASs) to explore a causal relationship between GERD (N cases = 129,080) and IBS (N cases = 4,605) of European ancestry. Furthermore, the inverse-variance weighted (IVW) method and a series of sensitivity analyses were used to assess the accuracy and confidence of our results. Results: We found a significant association of GERD with IBS (NSNP = 74; OR: 1.375; 95% CI: 1.164-1.624; p < 0.001). Reverse MR analysis showed no evidence of a causal association for IBS with GERD (NSNP = 6; OR: 0.996; 95% CI: 0.960-1.034; p = 0.845). Conclusion: This study provides evidence that the presence of GERD increases the risk of developing IBS, and it is observed from the reverse MR results that IBS did not increase the risk of GERD.

7.
Obes Rev ; : e13738, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491337

RESUMO

Mounting evidence shows that bisphenol A (BPA) is associated with metabolic risk factors. The aim of this study was to review related epidemiologic studies and conduct a meta-analysis to quantitatively estimate the association between BPA and metabolic syndrome. Four electronic databases were systematically searched to identify suitable articles. A total of 47 published studies were finally included. Two studies involved metabolic syndrome. Of the 17, 17, 14, and 13 studies on the relationship between BPA with abdominal obesity, blood pressure, fasting plasma glucose, and dyslipidemia, 10, 6, 3, and 4 studies were included in the meta-analysis, respectively. The results showed that the risk of abdominal obesity increased with the increase of BPA exposure, especially in the group with higher BPA exposure levels (Quartile 2 vs. Quartile 1, pooled OR = 1.16, 95%CI: 1.01, 1.33; Q3 vs. Q1 , pooled OR = 1.31, 95%CI: 1.13, 1.51; Q4 vs. Q1 , pooled OR = 1.40, 95%CI: 1.21, 1.61). However, there was no significant correlation between BPA exposure and metabolic syndrome components including hypertension, abnormal fasting plasma glucose, and dyslipidemia. The present study found that BPA exposure is significantly associated with a higher risk of abdominal obesity. However, the relationship between BPA with metabolic syndrome and its other components needs further longitudinal studies to verify.

8.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542855

RESUMO

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Carbamatos/farmacologia , Tiofanato , Antibacterianos
9.
J Nanobiotechnology ; 22(1): 134, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549081

RESUMO

BACKGROUND: Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS: Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-ß as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1ß and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS: The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.


Assuntos
Neovascularização da Córnea , Minociclina , Humanos , Minociclina/farmacologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/prevenção & controle , Microesferas , 60489 , Álcalis
10.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474136

RESUMO

OVATE family proteins (OFPs) play important roles in plant growth and development, hormone signaling, and stress response pathways. However, the functions of OsOFPs in rice are largely unknown. In this study, a novel gain-of-function rice mutant, Osofp6-D, was identified. This mutant exhibited decreased plant height, erect leaves, reduced panicle size, short and wide seeds, delayed seed germination time, and reduced fertility. These phenotypic changes were attributed to the increased expression of OsOFP6, which was caused by a T-DNA insertion. Complementation of the Osofp6-D phenotype by knockout of OsOFP6 using the CRISPR/Cas9 system confirmed that the Osofp6-D phenotype was caused by OsOFP6 overexpression. In addition, transgenic plants overexpressing OsOFP6 with the 35S promoter mimicked the Osofp6-D phenotype. Cytological observations of the glumes showed that OsOFP6 overexpression altered the grain shape, mainly by altering the cell shape. Hormone response experiments showed that OsOFP6 was involved in the gibberellin (GA) and brassinolide (BR) signaling responses. Further studies revealed that OsOFP6 interacts with E3BB, which is orthologous to the Arabidopsis central organ size-control protein BIG BROTHER (BB). This study further elucidates the regulation mechanism of the rice OFP family on plant architecture and grain shape.


Assuntos
Arabidopsis , Oryza , Proteínas de Plantas/genética , Grão Comestível/genética , Sementes/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Hormônios/metabolismo , Oryza/genética , Regulação da Expressão Gênica de Plantas
11.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534506

RESUMO

Gastric cancer poses a societal and economic burden, prompting an exploration into the development of materials suitable for gastric reconstruction. However, there is a dearth of studies on the mechanical properties of porcine and human stomachs. Therefore, this study was conducted to elucidate their mechanical properties, focusing on interspecies correlations. Stress relaxation and tensile tests assessed the hyperelastic and viscoelastic characteristics of porcine and human stomachs. The thickness, stress-strain curve, elastic modulus, and stress relaxation were assessed. Porcine stomachs were significantly thicker than human stomachs. The stiffness contrast between porcine and human stomachs was evident. Porcine stomachs demonstrated varying elastic modulus values, with the highest in the longitudinal mucosa layer of the corpus and the lowest in the longitudinal intact layer of the fundus. In human stomachs, the elastic modulus of the longitudinal muscular layer of the antrum was the highest, whereas that of the circumferential muscularis layer of the corpus was the lowest. The degree of stress relaxation was higher in human stomachs than in porcine stomachs. This study comprehensively elucidated the differences between porcine and human stomachs attributable to variations across different regions and tissue layers, providing essential biomechanical support for subsequent studies in this field.

12.
BMC Oral Health ; 24(1): 320, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461253

RESUMO

BACKGROUND: This study aimed to evaluate the characteristics of mandibular protrusive condylar trajectory in adolescents with skeletal Class II Division 1 malocclusion and the changes of condylar trajectory during mandibular advancement (MA) treatment using clear functional aligners. METHODS: This prospective study consisted of a cross-sectional study and a longitudinal study. In cross-sectional study, sixty-one adolescents were divided into two groups: Class I (n = 30) and Class II Division 1 (n = 31). The condylar trajectory was measured and compared using the Mann-Whitney U test. The longitudinal study was the MA treatment group using clear functional aligner and consisted of 16 participants from Class II Division 1group. The condylar trajectory was collected at three-time points: pre-treatment (T1), during MA treatment at approximately 3 months (T2, 105.6 days average), and at the end of MA treatment (T3, 237.6 days average). The changes at T1, T2, and T3, as well as the symmetry between the left and right condyles across all groups, were examined using the Wilcoxon paired test. RESULTS: A greater increase in the anteroposterior displacement and space displacement during protrusive movements was observed in the Class II Division 1 group compared with that in the Class I group, with a large difference being observed in the left and right condylar movements. The condylar anteroposterior displacement and space displacement decreased significantly at T2 and increased significantly at T3; however, no significant difference was observed between T1 and T3. A significant difference was observed between the condylar movement on the left and right sides at T1; however, no significant difference was observed at T2 and T3. CONCLUSIONS: Adolescents with Class II Division 1 malocclusion had higher protrusive capacity than those with Class I. Moreover, their left and right condylar motion was more asymmetric. The range of condyle motion decreased first and then increased during MA therapy, and the left and right condyle movement became more symmetrical, which may be the adaptive response of neuromuscular function to the changes in jaw position.


Assuntos
Má Oclusão Classe II de Angle , Avanço Mandibular , Humanos , Adolescente , Estudos Prospectivos , Estudos Longitudinais , Estudos Transversais , Mandíbula , Má Oclusão Classe II de Angle/terapia , Cefalometria
13.
J Inflamm Res ; 17: 1365-1375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439928

RESUMO

Objective: To explore the correlation between serum uric acid (SUA) trajectories and new-onset hypertension, to provide scientific basis for the prevention and treatment of hypertension. Methods: The study cohort was composed of 4372 subjects who met the inclusion criteria in the cohort study of Henan physical examination population. According to the SUA values of the subjects' physical examination from 2017 to 2019, three different SUA trajectory groups were determined by R LCTM tools, namely low stability group, medium stability group and high stability group. The incidence of hypertension during physical examination in 2020 was followed up, the cumulative incidence rate in each group was calculated by product limit method, and the correlation between different SUA trajectories and new-onset hypertension was analyzed by Cox proportional hazards regression model. Results: The incidence rate of hypertension increased with the increase of SUA locus, which was 4.65%, 9.18% and 12.43% respectively, and the difference was statistically significant (P<0.001). After adjusting multiple confounding factors, such as gender, waist circumference (WC), blood pressure, body mass index (BMI), fasting plasma glucose (FPG) and blood lipid by Cox proportional hazards regression model, the risk of hypertension in SUA medium stability and high stability group was still 1.476 times (95% CI: 1.089~2.000) and 1.692 times (95% CI: 1.152~2.484) of low-stable SUA group (P<0.05). Conclusion: The risk of hypertension increases with the increase of SUA level in the long-term normal range. It is necessary to carry out the intervention for hypertension with long-term normal high value to avoid the progress of hypertension disease, to achieve the purpose of early prevention of hypertension.

14.
J Nanobiotechnology ; 22(1): 85, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429826

RESUMO

BACKGROUND: Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS: Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS: Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Molibdênio/farmacologia , Molibdênio/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrogênio/metabolismo , Autofagia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38516703

RESUMO

Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.

16.
Clin Exp Immunol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517050

RESUMO

Excessive formation of neutrophil extracellular traps (NETs) may lead to myositis-related interstitial lung disease (ILD). There is evidence that NETs can directly injure vascular endothelial cells and play a pathogenic role in the inflammatory exudation of ILD. However, the specific mechanism is unclear. This study aimed to investigate the specific mechanism underlying NET-induced injury to human pulmonary microvascular endothelial cells (HPMECs). HPMECs were stimulated with NETs (200 ng/ml) in vitro. Cell death was detected by propidium iodide staining. The morphological changes of the cells were observed by transmission electron microscopy (TEM). Pyroptosis markers were detected by western blot, immunofluorescence and quantitative real-time PCR, and the related inflammatory factor IL-1ß was verified by ELISA. Compared with the control group, HPMECs mortality increased after NET stimulation, and the number of pyroptosis vacuoles in HPMECs was further observed by TEM. The pulmonary microvascular endothelial cells (PMECs) of the experimental autoimmune myositis (EAM) mouse model also showed a trend of pyroptosis in vivo. Cell experiment further confirmed the significantly high expression of the NLRP3 inflammasome and pyroptosis-related markers, including GSDMD and inflammatory factor IL-1ß. Pretreated with the NLRP3 inhibitor MCC950, the activation of NLRP3 inflammasome and pyroptosis of HPMECs were effectively inhibited. Our study confirmed that NETs promote pulmonary microvascular endothelial pyroptosis by activating the NLRP3 inflammasome, suggesting that NETs-induced pyroptosis of PMECs may be a potential pathogenic mechanism of inflammatory exudation in ILD.

17.
New Phytol ; 242(3): 1131-1145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482565

RESUMO

Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.


Assuntos
Citrus , Citrus/genética , Citrus/metabolismo , Ácido Cítrico/metabolismo , Secas , Estações do Ano , Citratos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Frutas/genética , Frutas/metabolismo
18.
Front Immunol ; 15: 1285813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426091

RESUMO

Background: Vulnerable plaque was associated with recurrent cardiovascular events. This study was designed to explore predictive biomarkers of vulnerable plaque in patients with coronary artery disease. Methods: To reveal the phenotype-associated cell type in the development of vulnerable plaque and to identify hub gene for pathological process, we combined single-cell RNA and bulk RNA sequencing datasets of human atherosclerotic plaques using Single-Cell Identification of Subpopulations with Bulk Sample Phenotype Correlation (Scissor) and Weighted gene co-expression network analysis (WGCNA). We also validated our results in an independent cohort of patients by using intravascular ultrasound during coronary angiography. Results: Macrophages were found to be strongly correlated with plaque vulnerability while vascular smooth muscle cell (VSMC), fibrochondrocyte (FC) and intermediate cell state (ICS) clusters were negatively associated with unstable plaque. Weighted gene co-expression network analysis showed that Secreted Phosphoprotein 1 (SPP1) in the turquoise module was highly correlated with both the gene module and the clinical traits. In a total of 593 patients, serum levels of SPP1 were significantly higher in patients with vulnerable plaques than those with stable plaque (113.21 [73.65 - 147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/ml; P < 0.001). Adjusted multivariate regression analysis revealed that serum SPP1 was an independent determinant of the presence of vulnerable plaque. Receiver operating characteristic curve analysis indicated that the area under the curve was 0.737 (95% CI 0.697 - 0.773; P < 0.001) for adding serum SPP1 in predicting of vulnerable plaques. Conclusion: Elevated serum SPP1 levels confer an increased risk for plaque vulnerability in patients with coronary artery disease.


Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Biomarcadores , Angiografia Coronária , Osteopontina/genética , Placa Aterosclerótica/patologia
19.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421179

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Assuntos
NF-kappa B , Febre Grave com Síndrome de Trombocitopenia , Humanos , NF-kappa B/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , Nucleotidiltransferases/metabolismo , Interferons/metabolismo , Antivirais , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
20.
Environ Sci Pollut Res Int ; 31(12): 18916-18931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353822

RESUMO

This study establishes an indicator system encompassing economic, social, and environmental dimensions to assess the level of green development in animal husbandry from 2010 to 2020. It further examines the coupling coordination degree within each dimension. The Dagum Gini coefficient is employed to scrutinize the regional disparities in coupling coordination degree of the economic benefit, social benefit, and environmental benefit of the green development in Chinese animal husbandry. Additionally, Moran's I is utilized to identify the degree of spatial autocorrelation and aggregation types. The results demonstrate the following: (1) From 2010 to 2020, the level of green development in the animal husbandry in China has steadily improved. Among the three dimensions, economic benefits exhibit the highest performance, followed by environmental benefits and social benefits. There are obvious regional disparities in the green development of animal husbandry, which are "strong in north and weak in south" and "strong in west and weak in east." The Gini coefficient for green development in the animal husbandry in China experienced a fluctuating upward trend. (2) From 2010 to 2020, the overall coupling coordination degree of the economic benefit, social benefit, and environmental benefit of green development in the animal husbandry in China remains at a rudimentary level and demonstrates a steady upward trend. Spatially, it manifests an agglomeration pattern primarily centered around Beijing, with the northeastern region being the main focus. (3) The Gini coefficient for the coupling coordination degree experienced a slight fluctuating upward trend. In terms of inter-regional disparities, significant differences are observed between the northeastern region and the central region, as well as between the northeastern region and the eastern region. In terms of contribution to disparities, inter-regional contributions were the most substantial, followed by super-variable density, with intra-regional contributions being the smallest. (4) The coupling coordination degree displayed spatial autocorrelation, with "high-high" aggregation areas predominantly concentrated in the northeastern region.


Assuntos
Criação de Animais Domésticos , Desenvolvimento Sustentável , Animais , Pequim , China , Cidades , Desenvolvimento Econômico , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...